

DCM(Deep Cement Mixing)

1 DCM-Introduction

2. DCM-Construct System

3. DCM-Design

4. DCM-Project Case

Shanghai Geoharbour Construction Group Co., Ltd

- Deep cement mixing (DCM) is an in situ soil treatment technology whereby the soil mixed with cement, in order to improve bearing capacity of soil.
- In the deep mixing method, the ground is mechanically mixed in place and in depth by an auger machine while cement slurry is injected. After hardening of the soil-cement mixture, called soil mix material, soil-cement columns or rectangular soil mix panels are formed in the ground.

DCM - diagrammatic drawing

2 .DCM - construct system

1. Auto Mixing Plant

- Vertical type (more capacity)
- Horizontal type(more safety)

2. Base Machine

- Hydraulic crawler-type(most widely used)
- Walking type

3. Drilling system

- Auger(50HP-250HP)
- Rod
- Drill bit(blade type, screw type, blade-screw type)

Drill bit type

3. DCM – Design

- The strength class of cement should be not less than 32.5.
- > The cement mix content can be 7%-20%.
- > The water cement ratio of the cement slurry can be 0.45-1.5.
- UCS(28d) not less than 0.5MPa(waterproof curtain),0.8MPa(soil improvement).
- > Used as waterproof, the permeability coefficient not over 1×10 -7cm/s.
- The design of cement deep mixing is mainly to determine the displacement ratio and the length of the mix pile(determined by the bear capacity and deformation)

Soil	Materials	W/C matic	
	Cement (%)	Bentonite (%)	W/C ratio
Clay soil	≥15	0	0.7~1.5
Mud soil	≥17	0	0.7~1.5
Sand soil	≥13	5~10	0.7~1.5
gravel soil	≥13	10~20	0.7~1.5
reference table			

Blade rotation number

Total of rotations of mixing blades passing through 1 m shaft movement

$$T = \sum M \cdot \left(\frac{N_d}{V_d} + \frac{N_u}{V_u}\right)$$

where

- T: blade rotation number (N/m)
- N_d : number of rotation of mixing blades during penetration (N/min)
- N_u : number of rotation of mixing blades during withdrawal (N/min)
- V_d : penetration speed of mixing blades (m/min)
- V_u: withdrawal speed of mixing blades (m/min)
- $\sum M$:total number of mixing blades

Introduction

- Project Name: Matarbari Ultra Super Critical Coal-Fired Power Project, Bangladesh.
- Client: Coal Power Generation Company Bangladesh Limited (CPGCBL, State-owned company).
- Contractor: Sumitomo, Toshiba and IHI Corporation
- DMM sub-contractor: Geoharbour Group
- Project Period: 32 month(201805-202012).
- DMM Quantity: 1,463,300m³

Layout for DMM Area

Scope of works

- 1) Trial mixing for determining mix design.
- 2) Preparation and installation of DMM column
- 3) Quality management (pre-survey boring and reporting, core sampling for 0.4% of DMM column)
- 4) Removal of upheaved soil.

Equipment

Equipment

Summary of Equipment

	Specification	Total			
Description		Duty	Standby	Spare	Unit
DMM Rig	Hyudraulic	4	1		set
Auger	150kW	4	1	1	set
Mixing bit	10 blades	4	4	1	set
Generator for DMM rig	600KVA	4	3	1	set
Mixing plant	400m ³ /h	4	1	1	set
Generator for mixing plant	300KVA	4	2		set
Excavator	1.0m ³	5	2		set

DMM Rig

DMM Rig

Features for DMM Rig

Description	Classification	Specification	
	width	5.2m	
general dimension	height	7.345m	
	length	7.88m	
power unit	type	DH	
	displacement	7961cc	
	max torque	7.5kN/1600rpm	
	fuel tank	250 liters	
	root dia & length	20mm*565m	
main hoist(front)	line speed	H64m/min,L32m/min	
boom	basic length	21m	
	crawler belt width	800mm	
ground pressure	weight	47.3ton/135ton	
	pressure	173kPa	

Mixing plant

Up silo Downside mixing

Mixing plant

Monitoring system

Auger & Mixing Bit

- Double shaft auger
- Capacity:250HP
- Mixing Bit
- Diameter, 1200mm, 2shaf
- Blades: 10numbers
- C to C: 1000mm of distance between both axis.
- 2.17m2 of improved area(deduct overlapping)

Mixing Bit

Mixing Parameters

Introduction

- Cement: Ordinary Portland Cement(OPC)
- Water: Sea water
- > DMM Quantity: 1,463,300m³
- W/C ratio: 1.0
- Cement content: 160-240kg/m³

Work Flow for DMM Works

Sequence DMM installation

Sequence of penetration injection

Equipment setting
 drilling to DMM Layer,2m/min
 DMM layer drilling,0.5m/min

4 Hard layer drilling,0.25m/min

- 5 Withdrawal without Injection,1m/min
- 6 Withdrawal without Injection,2m/min

Coring

- > 0.4% of the total DMM columns will randomly be sampled and tested
- Take 3 samples from the single DMM column
- Core samples will be taken after 20(twenty) days for visual check for the integrity and testing for unconfined compressive strength of the DMM columns.

• Sampling Point

Coring machine

Coring sample

SMW(soil mixing walls)

1 SMW-Principles

2. SMW-Advantages

3. SMW-Designs

4. SMW-Construction

5. SMW- Cases

Shanghai Geoharbour Construction Group Co., Ltd

1. SMW - Principles

- Mix cement slurry with in-situ soil by special equipment to construct overlapping cement soil columns, then insert H-pile to the cement soil columns as walls. It is used as retaining wall and sealing structure. The H pile can be pull out from ground
- after excavation work is completed.

SMW (Soil Mixing Wall) Development

- The Method is proposed in 1976 by Japan; Up to 1993, 50% deep foundation is by SMW;
- 2) SMW is also the most widely used method in Europe;
- China, started this Method in 1987.
 Shanghai first use SMW for 8m deep foundation in 1994.
 Currently, Most deep foundation by SMW in is 5~20m.

- Soil Cement Column for Watertight
- H-Beam for bearing lateral earth pressure

1. SMW - Principles

Finished SMW retaining wall
□1) small to medium size rigs can be used.

2) Perfect waterproof

3) H pile recycling use, the in-situ soil is used as s construction materials, no waste mud are generated. Saving energy and protecting environment

4) Widely applicable scope in soil layer(slurry, silt, clay, sand soil) & strut system.

5) Simple construction procedure, **shorted construction period**

16) **Lower cost** compare with Diaphragm Wall, Secant Pile/Continous Pile.

SMW + anchor

SMW+ strut system

3. SMW-design

1. Design principles

- Safety (stability and material strength)
- Cost (ensure that H-pile can be recycled)
- Convenient construction

2. Cement content

Cement content needs to be determined by mixture ratio test. Normally, cement content is around15%- 20%.

3. Embedment length

1) Embedment length of H pile

Determined by ground stability, wall deformation, H-pile extraction condition .

2) Embedment length of soil-cement mixing pile

Determined by ground stability, dewatering, and the embedment length of H pile.

3. SMW-design

4 Typical cross-section types

5 Calculation

> All earth and water pressure will act on the H-pile.

6 Material strength check

- Soil-cement mixing pile strength (shear)
- H-beam strength (bending, shear)

1) Soil Cement Column

2) Install H-Beam

Remark:

1) Before Install H-Beam, shall paint Drag Reducer on the H-Beam;

2) Install H-Beam shall finish within 30min after SCC finish.

4) Remove H-Beam

Remark:

The gap between SCW and basement wall must be backfilled compacted by soil before H pile extraction working

SMW Method Sketch map

SMW Machines

550SMW Rig

850SMW Rig

M15 Rig

Pre-drill

Ground Solidation Rig

SMW 5000 Rig

SMW 5000型 Rig

SMW 7500 Rig

Soil mixing machine

Soil mixing machine

Mixing shaft

Steel H-pile

Inserting H-Beam

Excavation

H pile extraction work Sequence

H pile extraction

- Yangong Inno City Development Project(Deep excavation works and retain wall works)
- Client: Inno city Development CO.,Ltd.
- Extension Length :750m
- Pile Quantity : 751 nos.
- SMW pile length:18m,20m
- Cement-soil column diameter: 1300mm(C.T.C,1000mm)
- > H pile size:H300 \times 300 \times 10 \times 15, H350 \times 350 \times 12 \times 19
- Excavation depth: 11.5-18.6m
- SCW periods: 3 month

SMW layout

NO.	EQUIPMENT NAME		PARAMETER/	QUANTITY
			CAPACITY	
1	Base machine(JZU180)		20×7m	1
2	Auger(SW300)		2×110kW	1
3	Shaft(GH1300)		2×Φ1300	1
4	Mixing system(JBZ-60)	mixing drum	30kW, 2.5m ³ /drump	1
		Slurry storage drum	4.0m ³ /7.5kW	1
		Water pump	2.2kW	2
		Screw conveyer	50t/h,7.5kW	1
		Silo	80t	1
		Air compressor	4.0kW,	1
			0.55m ³	
5	Vibratory hammer		45kw	1
6	Excavator(Dosan200)		0.8m ³	1
7	crane(KR250)		75Ton	1
8	Generator		800KVA/380KVA	2

Layout plan for SCW working

SCM Work Sequence

SCM progress

Repeat : Drilling and Drawing

Construction sequence

interval construction pile distance should be not less than 6m to ensure continuous construction.

DCM Rig

Setting

Drilling & H beam setting

Insert H beam

Excavation

Shanghai Delong Plaza excavation (SMW + steel beam strut)

Shanghai South railway station excavation (SMW + steel pipe strut)

Nanjing Centeral Jindi excavation (SMW + steel frame strut)

Wuhan Donghu tunnel (SMW + anchor)

Wuhan Wenling tunnel (SMW + steel pipe strut)

Kunming tunnel ((SMW + anchor)

Nantong cross street excavation ((SMW + anchor)
In the Past 20 Years, the SMW System has been widely used to replace D-Wall, bore pile, Secant Pile, saving huge quantity of Steel Material (H-Beam) and Construction Quality is guaranteed.

Thanks!